

Seat No.

HI-003-1014002

B. Sc. (Sem. IV) Examination **April - 2023** Physics : P - 401 (Thermodynamics & Electronics) (Old Course)

Faculty Code: 003 Subject Code : 1014002

Time : $2\frac{1}{2}$ Hours / Total Marks : 70

Instructions :

- (1) All questions are compulsory.
- Symbols have their usual meanings. (2)
- Figures to the right side indicate marks. (3)

1 (a) Answer the following in short: (1) What is the unit of specific heat in C.G.S. unit? (2) Write the Mayer's formula. (3) The efficiency of any heat engine can never be 100%. (True / False) (4) Write Lord Kelvin's statement for second law of thermodynamics. Answer in brief : (any **one**) 2 (b) (1)Find the efficiency of a Carnot's engine working between 127°C and 27°C. Carnot's engine has same efficiency between 1000 K (2)and 500 K and between x K and 1000 K. Calculate *x*-the temperature of sink. 3 Answer in detail : (any **one**) (c) (1) Describe zeroth law of thermodynamics. (2) Obtain Mayer's formula. 5 (d) Give answer in detail : (any **one**) Explain in detail Carnot's cycle. (1)(2)Write and prove Carnot's theorem.

4

2	(a)	Ans	wer the following in short:	4
		(1)	Write the unit of entropy.	
		(2)	In reversible process, the total change in entropy always zero. (True / False)	IS
		(3)	Write Stefan's Law.	
		(4)	Thermal radiation travels in straight line. (True / Fals	se)
	(b)	Ans	2	
		(1)	Compute the change in entropy when 25 gm of ice 0°C is converted into water at the same temperatu (Latent heat of fusion is 80 cal./gm.)	at re.
		(2)	Calculate the change in entropy for 3 gm of nitrog doubles in volume at constant temperature.	en
	(c)	Ans	3	
		(1)	Explain change in entropy in reversible process.	
		(2)	Write properties of thermal radiation.	
	(d)	Writ	te notes on : (any one)	5
		(1)	Derive Stefan - Boltzmann's Law.	
		(2)	Describe entropy of a steam.	
3	(a)	Ans	wer the following in short:	4
		(1)	The internal energy of the system remains constant an isochoric adiabatic process. (True / False)	in
		(2)	Halmholtz free energy <i>F</i> is defined as	
		(3)	Enthalpy remains constant in a reversible isoba adiabatic process. (True / False)	ric
		(4)	Write specific heat equation.	
	(b)	Ans	wer in brief : (any one)	2
		(1)	At 373 K, 1 gm of water occupies 1601 cm ³ evaporation. Calculate latent heat of steam	on if
			$\frac{dP}{dT} = 35985 \frac{dyne}{cm^2 K}.$	
		(2)	Compare the radiant emittance of a black body at 200	K
			and 2000 K. $\sigma = 5.672 \times 10^{-8} mks$.	
	(c)	Answer in detail : (any one)		3
		(1)	Describe internal energy.	
		(2)	Explain Gibb's free energy.	
HI-0	03-101	14002] 2	Contd

HI-003-1014002		14002] 3 [Con	td	
		(4)	Which bridge is used to find unknown capacitance?		
		(3)	Write the balance condition for ac bridge.		
		(2)	The frequency of LC oscillations is given by $f =$		
		(1)	In LR circuit $P = VI \cos \phi$, where $\cos \phi$ is called		
5	(a)	Answer the following in short:			
		(2)	Explain universal gates.		
		(1)	Define the JFET parameters and obtain the relation between them.		
	(d)	Writ	te notes on : (any one)	5	
		(2)	Draw and explain characteristics of UJT.		
		(1)	Explain the working of LED.		
	(c)	Ansv	wer in detail : (any one)	3	
			find the values of R_{B_1} and R_{B_2} .		
		(2)	The parameters of UJT are $R_{BB} = 5 k\Omega$ and $\eta = 0.6$,		
		(1)	change in I_D . Find the a.c. drain resistance if $V_{GS} = -1.5 V$.		
	(0)	(1)	In IEEE if 2 V changes of V produces 0.2 mA	2	
	(\mathbf{b})	(+) Ansi	which the truth table of AND gate.	2	
		(3)	Write the truth table of AND gate		
		(2)	EFT is less poisy than BIT (True / False)		
		(1)	Draw airavit symbol of LED		
4	(a)	Answer the following in short:			
		(2)	State the Maxwell's thermodynamical relations and deduce T_{ds} equation.		
		(1)	Write the Maxwell's four thermodynamical relations and derive specific heat equation.		
	(d)	Writ	te notes on : (any one)	5	

HI-003-1014002]

[Contd...

- (b) Answer in brief : (any **one**) 2 In Maxwell's bridge the balance is obtained when (1) $C_1 = 0.01 \,\mu F, R_1 = 470 \,k\Omega, R_2 = 2.7 \,k\Omega$ and $R_3 = 100 \ k\Omega$. Find the inductive impedance. Find the resonance frequency of series LC circuit if (2) $L = 200 \,\mu H$ and $C = 200 \, PF$. Answer in detail : (any one) 3 (c) (1) Explain RL series circuit. (2)Describe the Barkhausen criteria. (d) Write note on : (any **one**) Explain the construction and working of Wein bridge (1)oscillator.
 - Obtain the general conditions for bridge balance. (2)

5